Protocol

Endoscopic Radiofrequency Ablation or Cryoablation for Barrett Esophagus

<table>
<thead>
<tr>
<th>Medical Benefit</th>
<th>Effective Date: 01/01/16</th>
<th>Next Review Date: 09/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preauthorization</td>
<td>No</td>
<td>Review Dates: 05/09, 03/10, 03/11, 03/12, 07/12, 03/13, 03/14, 09/14, 09/15, 09/16, 09/17, 09/18</td>
</tr>
</tbody>
</table>

Preauthorization is not required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With Barrett esophagus with high-grade dysplasia</td>
<td>Interventions of interest are: • Endoscopic radiofrequency ablation</td>
<td>Comparators of interest are: • Esophagectomy • Endoscopic mucosal resection • Surveillance</td>
<td>Relevant outcomes include: • Overall survival • Change in disease status • Morbid events • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With Barrett esophagus with low-grade dysplasia</td>
<td>Interventions of interest are: • Endoscopic radiofrequency ablation</td>
<td>Comparators of interest are: • Surveillance</td>
<td>Relevant outcomes include: • Overall survival • Change in disease status • Morbid events • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With Barrett esophagus without dysplasia</td>
<td>Interventions of interest are: • Endoscopic radiofrequency ablation</td>
<td>Comparators of interest are: • Surveillance</td>
<td>Relevant outcomes include: • Overall survival • Change in disease status • Morbid events • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With Barrett esophagus with or without dysplasia</td>
<td>Interventions of interest are: • Endoscopic cryoablation</td>
<td>Comparators of interest are: • Esophagectomy • Endoscopic mucosal resection • Surveillance</td>
<td>Relevant outcomes include: • Overall survival • Change in disease status • Morbid events • Treatment-related mortality • Treatment-related morbidity</td>
</tr>
</tbody>
</table>

DESCRIPTION

In Barrett esophagus (BE), the normal squamous epithelium is replaced by specialized columnar-type epithelium, known as intestinal metaplasia. Intestinal metaplasia is a precursor to adenocarcinoma and may be treated with mucosal ablation techniques such as radiofrequency ablation (RFA) or cryoablation.
SUMMARY OF EVIDENCE

For individuals who have BE with high-grade dysplasia (HGD) who receive endoscopic RFA, the evidence includes a randomized controlled trial (RCT) comparing radical endoscopic resection with focal endoscopic resection followed by RFA, an RCT comparing RFA with surveillance alone, and a number of observational studies, some of which compared RFA with other endoscopic treatment modalities. Relevant outcomes are overall survival, change in disease status, morbid events, and treatment-related morbidity and mortality. The available evidence has shown that using RFA to treat BE with HGD is at least as effective in eradicating HGD as other ablative techniques, with a lower progression rate to cancer, and may be considered an alternative to esophagectomy. Evidence from at least one RCT has demonstrated higher rates of eradication than surveillance alone. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have BE with low-grade dysplasia (LGD) who receive endoscopic RFA, the evidence includes at least two RCTs comparing RFA with surveillance alone, a number of observational studies, and systematic reviews of these studies. Relevant outcomes are overall survival, change in disease status, morbid events, and treatment-related morbidity and mortality. For patients with confirmed LGD, evidence from an RCT has suggested that RFA reduces progression to HGD and adenocarcinoma. Challenges exist in differentiating between nondysplastic BE and BE with LGD; making the correct diagnosis has important implications for LGD treatment decisions. One of the available RCTs required that LGD be confirmed by an expert panel, which supports the use of having a gastrointestinal pathologist confirm LGD before treatment of BE with LGD can begin. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have BE without dysplasia who receive endoscopic RFA, the evidence includes single-arm studies reporting outcomes after RFA. Relevant outcomes are overall survival, change in disease status, morbid events, and treatment-related morbidity and mortality. The available studies have suggested that nondysplastic metaplasia can be eradicated by RFA. However, the risk-benefit ratio and the net effect of RFA on health outcomes are unknown. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have BE with or without dysplasia who receive endoscopic cryoablation, the evidence includes noncomparative studies reporting outcomes after cryoablation. Relevant outcomes include overall survival, change in disease status, morbid events, and treatment-related morbidity and mortality. These studies have generally demonstrated high rates of eradication of dysplasia. However, the available evidence does not compare cryoablation with surgical care or RFA. The evidence is insufficient to determine the effects of the technology on health outcomes.

POLICY

Radiofrequency ablation may be considered medically necessary for the treatment of Barrett esophagus with high-grade dysplasia (see Policy Guidelines).

Radiofrequency ablation may be considered medically necessary for the treatment of Barrett esophagus with low-grade dysplasia, when the initial diagnosis of low-grade dysplasia is confirmed by two physicians (see Policy Guidelines).

Radiofrequency ablation is considered investigational for the treatment of Barrett esophagus when the above criteria are not met, including but not limited to Barrett esophagus in the absence of dysplasia.

Cryoablation is considered investigational for the treatment of Barrett esophagus, with or without dysplasia.
POLICY GUIDELINES

RFA for Barrett esophagus with HGD may be used in combination with endoscopic mucosal resection of nodular or visible lesions. The diagnosis of HGD should be confirmed by two pathologists before initiating RFA.

There is considerable interobserver variability in the diagnosis of LGD, and the potential exists for overdiagnosis of LGD by nonexpert pathologists (overdiagnosis is due primarily to the difficulty in distinguishing inflammatory changes from LGD). There is literature evidence that expert gastrointestinal (GI) pathologists will downgrade a substantial portion of biopsies that are initially read as LGD by nonexperts (Curvers et al, 2010; Kerkhof et al, 2007). As a result, it is ideal that two experts in GI pathology agree on the diagnosis to confirm LGD; this may result in greater than 75% of initial diagnoses of LGD being downgraded to nondysplasia (Curvers et al, 2010). A review by a single expert GI pathologist will also result in a large number of LGD diagnoses being downgraded, although probably not as many as achieved using two expert pathologists (Kerkhof et al, 2007).

BACKGROUND

BARRETT ESOPHAGUS AND RISK OF ESOPHAGEAL CARCINOMA

The esophagus is normally lined by squamous epithelium. Barrett esophagus (BE) is a condition in which the normal squamous epithelium is replaced by specialized columnar-type epithelium, known as intestinal metaplasia, in response to irritation and injury caused by gastroesophageal reflux disease. Occurring in the distal esophagus, BE may be of any length; it may be focal or circumferential and can be seen on endoscopy as being a different color than the background squamous mucosa. Confirmation of BE requires biopsy of the columnar epithelium and microscopic identification of intestinal metaplasia.

Intestinal metaplasia is a precursor to esophageal adenocarcinoma, which is thought to result from a stepwise accumulation of genetic abnormalities in the specialized epithelium, resulting in the phenotypic expression of histologic features from LGD, to HGD, to carcinoma. Two large epidemiologic studies published in 2011 reported the risk of progression to cancer in patients with BE. One reported the rate of progression to cancer in more than 8000 patients with a mean duration of follow-up of seven years (range, one to 20 years). The de novo progression to cancer from BE at one year was 0.13%. The risk of progression was reported as 1.4% per year in patients with LGD and 0.17% per year in patients without dysplasia. This incidence translates into a risk of 10 to 11 times that of the general population. The other study identified more than 11,000 patients with BE and after a median follow-up of 5.2 years; it reported that the annual risk of esophageal adenocarcinoma was 0.12%. Detection of LGD on index endoscopy was associated with an incidence rate for adenocarcinoma of 5.1 cases per 1000 person-years, and the incidence rate among patients without dysplasia was 1.0 case per 1000 person-years. Risk estimates for patients with HGD were slightly higher.

The reported risk of progression to cancer in BE in older studies was much higher, with an annual incidence of risk of 0.4% to 0.5% per year, with risk estimated at 30 to 40 times that of the general population. Current surveillance recommendations have been based on these higher risk estimates.

Management

The management of BE includes treatment of gastroesophageal reflux disease and surveillance endoscopy to detect progression to HGD or adenocarcinoma. The finding of HGD or early-stage adenocarcinoma warrants mucosal ablation or resection (either endoscopic mucosal resection [EMR] or esophagectomy).

EMR, either focal or circumferential, provides a histologic specimen for examination and staging (unlike ablative techniques). One 2007 study provided long-term results for EMR in 100 consecutive patients with early Barrett-associated adenocarcinoma (limited to the mucosa). The five-year overall survival was 98% and, after a mean of 36.7 months, metachronous lesions were observed in 11% of patients. In a review by Pech and Ell (2009), the
authors stated that circumferential EMR of the entire segment of BE leads to a stricture rate of 50%, and recurrences occur at a rate of up to 11%.4

Ablative Techniques

Available mucosal ablation techniques that include several thermal (multipolar electrocoagulation [MPEC], argon plasma coagulation [APC], heater probe, Nd:YAG laser, KTP-YAG laser, diode laser, argon laser, cryoablation) or nonthermal (5-aminolevulinic acid, photodynamic therapy [PDT]) techniques. In a 2005 randomized phase 3 trial, PDT was shown to decrease significantly the risk of adenocarcinoma in BE.5 (PDT for BE is discussed in the Oncologic Applications of Photodynamic Therapy, Including Barrett Esophagus Protocol.)

The CryoSpray Ablation system uses a low-pressure spray for spraying liquid nitrogen through an upper endoscope. Cryotherapy allows for treatment of uneven surfaces; however, a disadvantage of the treatment is the uneven application inherent in spraying the cryogen.

The HALO system uses radiofrequency energy and consists of two components: an energy generator and an ablation catheter. The generator provides rapid (i.e., less than one second) delivery of a predetermined amount of RF energy to the catheter. The HALO90 or the HALO360 is inserted into the esophagus with an endoscope, using standard endoscopic techniques. The HALO90 catheter is plate-based and used for focal ablation of areas of BE up to three cm. The HALO360 uses a balloon catheter that is sized to fit the individual’s esophagus and is inflated to allow for circumferential ablation.

Ablation with RF affects only the most superficial layer of the esophagus (i.e., the mucosa), leaving the underlying tissues unharmed. Measures of efficacy for the procedure are eradication of intestinal metaplasia and post-ablation regrowth of the normal squamous epithelium. (Note: The eradication of intestinal metaplasia does not leave behind microscopic [or “buried”] foci). Reports of the efficacy of the HALO system in ablating BE have been as high as 70% (comparable with alternative methods of ablation [e.g., APC, MPEC]), and even higher in some reports. The incidence of leaving behind buried foci of intestinal metaplasia has been reported to be between 20% and 44% with APC and 7% with MPEC; studies using the HALO system have reported 0%.6 Another potential advantage to the HALO system is that because it is an automated process, it eliminates operator-dependent error that may be seen with APC or MPEC.

The risk of treating HGD or mucosal cancer solely with ablative techniques is undertreatment for approximately 10% of patients with undetected submucosal cancer, in whom esophagectomy would have been required.4

REGULATORY STATUS

In 2005, the HALO360 (now Barrx™ 360 RFA Balloon Catheter; Barrx Medical, Sunnyvale, CA; acquired by Covidien in 2012) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process and, in 2006, the HALO90 (now Barrx™ 90 RFA Focal Catheter) received clearance. FDA-labeled indications are for use in coagulation of bleeding and nonbleeding sites in the gastrointestinal tract, and include the treatment of BE.7 FDA product code: GEI.

In December 2007, the CryoSpray Ablation™ System (formerly the SprayGenix Cryo Ablation system; CSA Medical, Lutherville, MD) was cleared for marketing by FDA through the 510(k) process for use as a “cryosurgical tool for destruction of unwanted tissue in the field of general surgery, specifically for endoscopic applications.”8 FDA product code: GEH.

In July 2002, the Polar Wand® device (Chek-Med Systems, Willington, CT), a cryosurgical device that uses compressed carbon dioxide, was cleared for marketing by FDA through the 510(k) process. Indications for use are
“ablation of unwanted tissue in the fields of dermatology, gynecology, general surgery, urology, and gastroenterology.”9

RELATED PROTOCOLS

Confocal Laser Endomicroscopy

Oncologic Applications of Photodynamic Therapy, Including Barrett Esophagus

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

21. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Radiofrequency ablation of nondysplastic or low-grade dysplastic Barrett’s esophagus. TEC Assessments. 2010;Volume 25:Tab 5. PMID